Glu	cose	, $\mathrm{C_6H_{12}O_6}$, can be completely combusted to give carbon of	lioxide and water.
		$C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2$	O(I)
(a)		ne body, the conversion of glucose into carbon dioxide and tages catalysed by enzymes.	d water takes place in a numbe
	Wh	at name is given to this oxidation process in the body?	
			[1]
(b)		tudent carries out an experiment to determine the entrose.	nalpy change of combustion o
		ne experiment, $0.831\mathrm{g}$ of glucose is burned. The energy revater from $23.7\mathrm{^{\circ}C}$ to $41.0\mathrm{^{\circ}C}$.	eleased is used to heat 100 cm ²
	(i)	Calculate the energy released, in kJ, during combustion	of 0.831 g glucose.
		The specific heat capacity of water = $4.18 \mathrm{Jg^{-1}}\ \mathrm{K^{-1}}$. Density of water = $1.00\mathrm{gcm^{-3}}$.	
			energy = kJ [2]
	(ii)	Calculate the amount, in moles, of glucose that is burned	i.
	(iii)	Calculate the enthalpy change of combustion of glucose. Give your answer to three significant figures.	amount = mol [2]

(c) The standard enthalpy change of combustion of glucose can also be determined indirectly.

Calculate the standard enthalpy change of combustion of glucose using the standard enthalpy changes of formation below.

substance	∆ <i>H</i> _f → /kJ mol ⁻¹
C ₆ H ₁₂ O ₆ (s)	-1250
CO ₂ (g)	-394
H ₂ O(I)	-286

$$\mathrm{C_6H_{12}O_6(s)} \ + \ 6\mathrm{O_2(g)} \ \longrightarrow \ 6\mathrm{CO_2(g)} \ + \ 6\mathrm{H_2O(l)}$$

		answer =		. kJ mol ^{–1} [3]
(d)	Suggest two reasons why standard experimentally are less exothermic than		cal values.	
				[2]

[Total: 12]

2 Compound I is found in biodiesel. It has the skeletal formula shown below.

(a)	Name the two	functional	groups that	t are present	in a mo	lecule of	I.

	[
(b)	Why is compound I unsaturated?	

 	 [1]

(c)	A sample of compound I is shaken with aqueous bromine.
	What colour change would you see?

from	to T	11
11OIII	ιο [ַני.

(d) Compound ${\bf J}$ is a stereoisomer of compound ${\bf I}$.

(i)	What is meant by the term stereoisomers?

 	[1]

(ii) Draw or describe how the structure of ${\bf J}$ differs from that of ${\bf I}.$

[1]

(e)	A s	tudent determined the enthalpy change of combustion for compound I.
	In h	ner experiment, 1.34g of compound I was used to heat 50.0g of water.
	The	e temperature of the water changed from 20.2°C to 54.0°C.
	(i)	What is meant by the term enthalpy change of combustion, $\Delta H_{\rm c}$?
		[2]
	(ii)	Calculate the energy released, in kJ, in the student's experiment.
		The specific heat capacity of water is 4.18 J g ⁻¹ K ⁻¹ .
		energy = kJ [2]
	(iii)	The molecular formula of compound I is $C_{17}H_{32}O_2$.
		Calculate the amount, in moles, of compound I used by the student.
		amount = mol [2]
	(iv)	Calculate the enthalpy change of combustion of compound I.
		$\Delta H_{\rm c} = \dots k J {\rm mol}^{-1} [3]$
		Δι / _C – κοπιοι [5]

	(v)	The student noticed that compound I burnt with a yellow flame and produced black smoke.
		Suggest an explanation for these observations.
		[1]
(f)	Son	ne scientists believe that we should use more biofuels such as biodiesel and bioethanol.
	Bio	ethanol is made by the fermentation of plant sugars such as glucose.
		te the equation for the fermentation of glucose to make ethanol and state two essential ditions for this fermentation.
	equ	ation
	ess	ential conditions
		[3]
		[Total: 19]

The alkanes are an homologous series of hydrocarbons.
The table shows information about some straight chain alkanes.

alkane	molecular formula	boiling point / °C
methane	CH ₄	-164
ethane	C ₂ H ₆	-89
propane	C ₃ H ₈	-42
butane	C ₄ H ₁₀	-1

(a)	(i)	What is meant by an homologous series?	
			[1]
	(ii)	Explain why the boiling points increase down the alkane homologous series.	
			[2]

(b) Alkynes are another homologous series of hydrocarbons. The table gives the molecular formulae of the first five straight chain alkynes.

alkyne	molecular formula
ethyne	C ₂ H ₂
propyne	C ₃ H ₄
but-1-yne	C ₄ H ₆
	C ₅ H ₈
hex-1-yne	C ₆ H ₁₀

(i) Suggest the name of a straight chain alkyne with the molecular formula		
		. [1]
(ii)	Deduce the general formula for an alkyne.	
		. [1]
(iii)	The alkynes contain the C≡C functional group.	
	Suggest the displayed formula for propyne.	
		[1]
(iv)	Hex-1-yne has many cyclic structural isomers.	1.3
,		
	Draw the skeletal structure of one of these cyclic structural isomers.	

(c) Ethyne is commonly called acetylene.

It is used in an oxy-acetylene flame which is hot enough to cut through steel.

Ethyne completely combusts as shown in the equation below.

$$H-C\equiv C-H$$
 + 2½ $O\equiv O$ \longrightarrow OH + 2 $O\equiv C\equiv O$

Calculate the enthalpy change of combustion of ethyne using the average bond enthalpies in the table below.

bond	average bond enthalpy / kJ mol ⁻¹
C–H	+415
C≣C	+837
O=O	+498
C=O	+805
O–H	+464

enthalpy change of combustion = kJ mol⁻¹ [3]

(d) Ethyne is formed when water reacts with calcium carbide, CaC₂.

$$CaC_2(s) + 2H_2O(l) \rightarrow Ca(OH)_2(s) + C_2H_2(g)$$

The standard enthalpy change of this reaction can be determined indirectly using standard enthalpy changes of formation.

(i)	What is meant by the term standard enthalpy change of formation, $\Delta H_{\rm f}^{ \oplus}$? You should state the standard conditions in your answer.

.....[3]

(ii) Standard enthalpy changes of formation are shown in the table below.

substance	standard enthalpy change of formation, ΔH_f^{-} /kJ mol ⁻¹
CaC ₂ (s)	-60
H ₂ O(I)	-286
Ca(OH) ₂ (s)	-987
C ₂ H ₂ (g)	+227

Calculate the standard enthalpy change of the reaction:

$$\mathrm{CaC_2(s)} \ + \ 2\mathrm{H_2O(l)} \ \longrightarrow \ \mathrm{Ca(OH)_2(s)} \ + \ \mathrm{C_2H_2(g)}$$

(e) A factory makes ethyne gas from calcium carbide, CaC₂. One of the waste products is calcium hydroxide.

$$\mathrm{CaC_2} \, + \, \mathrm{2H_2O} \, \longrightarrow \, \mathrm{Ca(OH)_2} \, + \, \mathrm{C_2H_2}$$

Each day 1.00×10^6 grams of calcium carbide are used and 3.60×10^5 dm³ of ethyne gas, measured at room temperature and pressure, is manufactured.

(i) Calculate the atom economy for this process using the relative formula masses in the table below.

compound	relative formula mass
CaC ₂	64.1
H ₂ O	18.0
Ca(OH) ₂	74.1
C ₂ H ₂	26.0

atom economy = % [2]

(ii) Calculate the amount, in moles, of ${\rm CaC}_2$ used each day.

amount of $CaC_2 = \dots mol [1]$

(iii) Calculate the amount, in moles, of C₂H₂ made each day.

amount of $C_2H_2 = \dots mol [1]$

(iv) Calculate the percentage yield of C_2H_2 .

mment on the percentage yield and the atom economy of this process in terms of tainability.	(v)
[2]	
[Total: 23]	

Dilu	ite ad	queous hydrogen peroxide, H ₂ O ₂ (aq), is used to sterilise contact lenses.	
(a)	a) Dilute H ₂ O ₂ (aq) slowly decomposes at room temperature to produce oxygen and water.		
	The decomposition of H ₂ O ₂ (aq) can be made faster by:		
	•	increasing the concentration of the $\rm H_2O_2(aq)$, adding a small amount of manganese(IV) oxide catalyst, heating the solution to 60 °C.	
	(i)	Construct the equation for the decomposition of $\mathrm{H_2O_2}$.	
	(ii)	Explain why increasing the concentration of ${\rm H_2O_2(aq)}$ increases the rate of decomposition.	
	(iii)	Explain how the catalyst can increase the rate of decomposition of ${\rm H_2O_2(aq)}$.	
		[2]	

(iv) Explain why increasing the temperature of $\rm H_2O_2(aq)$ increases the rate of decomposition.

As part of your answer, you should add a second curve and any necessary labels to the Boltzmann distribution of molecular kinetic energies shown below.

(b) (i) In the past, hydrogen peroxide was manufactured by reacting barium peroxide, BaO₂, with ice-cold dilute sulfuric acid.

$$BaO_2(s) + H_2SO_4(aq) \rightarrow BaSO_4(s) + H_2O_2(aq)$$

This method required the disposal of poisonous barium compounds.

Calculate the atom economy for this manufacture of hydrogen peroxide from BaO_2 . Use the table of relative formula masses given below.

compound	relative formula mass
BaO ₂	169.3
H ₂ SO ₄	98.1
BaSO ₄	233.4
H ₂ O ₂	34.0

atom econom	N/ —	% [2	21
alum c cumum	ıv —	/O IA	-

	and a substar	and a substance called anthraquinone.			
	stage 1	H_2 + anthraquinone \rightarrow anthraquinol			
	stage 2	${\rm O_2}$ + anthraquinol \rightarrow ${\rm H_2O_2}$ + anthraquinone			
		Compare the manufacture of $\rm H_2O_2$ from hydrogen and oxygen with the manufacture from barium peroxide described in $\bf b(i)$.			
	Explain the ad	dvantages of the manufacture of $\rm H_2O_2$ from hydrogen and oxygen.			
		[3]			
(c)		H ₂ O ₂ are exothermic.			
		ne enthalpy changes that take place during bond breaking and bond making ne reactions are exothermic.			
		F03			
		[2]			
		[Total: 15]			

(ii) Nowadays, hydrogen peroxide is manufactured using hydrogen gas, oxygen from the air